Москва, Ленинский проспект 18 корпус 2,
тел. (495) 954-39-00
Journal/NDM43 2008 eng
New Data on Minerals. Volume 43. Мoscow: Аltum Ltd, 2008. 176 pages, 250 photos, and drawings.
Editor: Margarita I. Novgorodova, Doctor in Science, Professor.
Publication of Institution of Russian Academy of Sciences – Fersman Mineralogical Museum RAS
Содержание
- 1 Summary
- 2 Editorial Board
- 3 Publishing group
- 4 Сontent
- 4.1 New Minerals and Their Varieties, New Finds of Rare Minerals, Mineral Paragenesis Assemblages
- 4.2 Crystal Chemistry, Minerals as Prototypes of New Materials, Physical and Chemical Properties of Minerals
- 4.3 Mineralogical Museums and Collections
- 4.4 Personalities
- 4.5 Mineralogical Notes
- 4.6 Discussions
Summary
This volume contains articles on new mineral species and new finds of rare minerals, among them – Nalivkinite, a
new mineral of the astrophyllite group; new finds of Dzhalindite, Mo-bearing Stolzite and Greenockite in ores of the
Budgaya, Eastern Transbaikalia; new finds of black Powellite in molybdenum-uranium deposit of Southern
Kazakhstan. Corundum-bearing Pegmatite from the Khibiny massif and Columbite-Tantalite group minerals of raremetal
tantalum-bearing amazonite-albite granites from Eastern Transbaikalia and Southern Kazakhstan are
described. There is also an article on mineralogical and geochemical features of uranium ores from Southeastern
Transbaikalia deposits. New data on titanium-rich Biotite and on polymorphs of anhydrous dicalcium orthosilicate
are published.
“Mineralogical Museums and Collections” section contains articles on collections and exhibits of Fersman
Mineralogical Museum RAS: on the collection of mining engineer I.N. Kryzhanovsky; on Faberge Eggs from the
funds of this museum (including a describing of symbols on the box with these eggs); on the exhibition devoted to
A.E. Fersman’s 125th anniversary and to 80 years of the first edition of his famous book “Amuzing Mineralogy” and
the review of Fersman Mineralogical Museum acquisitions in 2006–2008. This section includes also some examples
from the history of discovery of national deposits by collection’s specimens.
In “Personalities” section there is article on A.E. Fersman’s Uralian expeditions and on his role in the organization of
the Ilmeny State Reserve; arcticle on the life and the activity of Professor G.P. Barsanov, the director of the Fersman
Mineralogical Museum in 1952–1976.
“Mineralogical Notes” section is devoted to Fe-dominant Bogdanovite from cementation zone of the Aginsky goldtelluride
deposit, Kamchatka; and on the find of Mackinawite inclusions in grossular at the Talnakh Achtarandite
locality.
In “Discussions” section there is a paper on problems of species formation in mineralogy where minerals of variable
composition and with variable structure are discussed on the example of eudialyte-eucolites.
The volume is interesting for mineralogists, geochemists, geologists, collaborators of Natural History museums, collectors
and minerals-amateurs.
Editorial Board
- Editor in Chief Margarita I. Novgorodova, Doctor in Science, Professor
- Executive Editor Elena A. Borisova, Ph. D.
- Evgeniy I. Semenov, Doctor in Science
- Svetlana N. Nenasheva, Ph. D.
- Marianna B. Chistyakova, Ph. D.
- Elena N. Matvienko, Ph. D.
- Mikhail E. Generalov, Ph. D
Publishing group
- Photo: Michael B. Leybov, Natalia А. Pekova
- Leader of Publishing Group Michael B. Leybov
- Executive Editor Ludmila A. Cheshko
- Art Editor Nikolai O. Parlashkevich
- Editor Andrey L. Cheshko, Alexander A. Prokubovsky
- Translators Il’ya Anisimov, Maria S. Alferova,
- Ivan S. Baksheev, Mark V. Fed’kin,
- Boris Z. Kantor, Alexander S. Yakubchuk
- Editors of Style(English) Peter Modreski, Patricia A.S. Gray, Frank C. Hawthorne
- Design (idea) Dmitrii Ershov
- Layout Ivan A. Glazov and Alexey A. Ludin
Authorized for printing by the Institution of Russian Academy of Sciences – Fersman Mineralogical Museum RAS
Text, photos, drawings, Institution of Russian Academy of Sciences – Fersman Mineralogical Museum RAS, 2008
Design AlLTUM Ltd, 2008
Published by
Institution of Russian Academy of Sciences – Fersman Mineralogical Museum RAS bld. 18, korpus 2, Leninskiy Prospekt Moscow 119071 Russia Phone: 74959520067; fax: 74959524850
e-mail: mineral@fmm.ru www.minbook.com
www.fmm.ru
ALTUM Ltd
Box 71
Moscow 117556 Russia
Phone/fax: +74956294812
eGmail: minbooks@inbox.ru
Printed in Russia
Circulation 300 copies
Сontent
New Minerals and Their Varieties, New Finds of Rare Minerals, Mineral Paragenesis Assemblages
Nalivkinite Li2NaFe2+7Ti2(Si8O24)O2(OH)4F, a New Mineral of the Astrophyllite Group from the Darai-Pioz Massif, Tadjikistan, p. 5 - 12
Nalivkinite, a new astrophyllite-group mineral, was discovered in the moraine of the Darai-Pioz alkaline massif located at the intersection of the Zeravshansky, Turkestansky and Alaisky Ridges, Tadjikistan. Nalivkinite occurs in the amphibole-quartz-feldspar rock in association with calcybeborosilite-(Y), bafertisite, jinshajiangite, zircon and thorite. Nalivkinite is brown with a bronze hue and a vitreous luster; in thin plates, it is transparent. Mohs hardness is 3, Dmeas. = 3.32(2) g/cm3, Dcalc. = 3.315 g/cm3. It is biaxial positive, np = 1.703(2), nm = 1.716(2), ng = 1.745(2), 2Vmeas. = +68(2)°, 2Vcalc. = +68.6°. Nalivkinite is triclinic, space group P1, a = 5.3745(6) Å; b = 11.9299(15) Å; c = 11.6509(14) Å; a =113.325(3)°, b = 94.524(2)°, g = 103.080(2)°, V = 656.2(2) Å3, Z = 1. Cell dimensions refined from X-ray powder diffraction data are as follows: a = 5.3707(2) Å; b = 11.9327(5) Å; c = 11.6546(4) Å; a =113.384(1)°, b = 94.547(1)°, 103.047(1)°, V = 655.85(2) Å3. The strongest reflections in the X-ray powder diffraction powder pattern are as follows: [(d, Å), (I, %), (hkl)]: 10.56 (100) (001), 3.50 (100) (003), 2.780 (80) (1–42), 2.648 (45) (211), 2578 (70)(130), 2.474 (15) (212), 2.295 (30) (131), 2.106 (35) (142), 1.760 (30) (133), 1.660 (15) (0–73). The infrared spectrum of nalivkinite is similar to that of astrophyllite, and the strongest lines are as follows (cm–1): 3600, 1621, 1077(sh), 1056, 975, 929, 696, 649, 566, 441, 438. The chemical composition (electron microprobe, wt. %, Li2O and Rb2O by ICP OES, H2O by the Penfield method): Al2O3 – 0.67, SiO2 – 35.92, TiO2 – 10.50, Nb2O5 – 1.68, CaO – 1.29, MgO – 0.09, MnO – 5.26, FeO – 32.76, Na2O – 1.62, K2O – 2.49, Li2O – 3.76, Cs2O – 1.40, Rb2O – 0.85, H2O – 3.13, F – 0.75, -O=F2 – 0.32, total – 100.04. The empirical formula of nalivkinite is (Li1.03K0.69Cs0.13Rb0.12)1.97(Na0.69Ca0.30)0.99(Fe2+5.97Mn0.97Mg0.03)6.97(Ti1.72Nb0.16Zr0.08)1.96[Si7.83Al0.17]8O25.98OH4.07 (F0.52OH0.48)1.00 and the ideal formula is Li2NaFe2+7Ti2(Si8O24)O2(OH)4F. The crystal structure of nalivkinite was refined to an R1 index of 6.26%. The name honors Dmitry Vasiljevich Nalivkin, a famous Russian geologist (1889–1982), author of numerous works on the geology, stratigraphy and paleontology of Central Asia. The holotype sample of nalivkinite is deposited at the Fersman Mineralоgical Museum, Russian Academy of Sciences, Moscow. читать далее...
Rare Minerals of In, Сd, Mo, and W in Gold-base Metal Veins of the Bugdaya Au-Mо(W)-porphyry Deposit, Eastern Transbaikalia, Russia, p. 13 - 22
New data on a number of rare minerals of In, Cd, Mo, and W, which have been obtained using modern analytical techniques, are described in this article. These minerals have been identified in gold-rich polymetallic ore superimposed on Mo(W) stockwork porphyry mineralization. Indium mineralization presents extremely rare dzhalindite In(OH)3 that was previously described in Russia only from deposits Dzhalinda, Amur region and Verkhnee, Primorsky krai as supergene mineral. Tungsten and molybdenum are concentrated in rare intermediate phase of the wulfenite-stolzite series Pb(W0.74Mo0.26)O4, and Cd, in greenockite CdS. Occurrence of well-shaped cubic crystals of dzhalindite exclusively in quartz and association of the mineral with sphalerite, native silver, and electrum allow suggesting its hypogene origin (in contrast to previous findings as supergene pseudomorphs after indium sulfide). However, additional investigation is required to establish formation conditions of dzhalindite. читать далее...
Black Powellite from Molybdenum-Uranium Deposit, p. 23 - 30
New data on black powellite from a Mo-U deposit, South Kazakhstan are given. Bipyramidal crystals of the mineral have been found in intimate association with uranium minerals of the oxidized zone, including uranyl-arsenate mica (uramarsite) and uranyl silicate uranophane-beta. X-ray diffraction, infrared spectroscopy, differential thermal analysis (DTA), analytical scanning electron microscopy (ASEM), electron microprobe, X-ray fluorescence analysis (XRFA), and laser spectrography have been performed to examine the mineral. Two varieties of powellite have been identified: crystalline in uranophane and amorphous in uranate. The causes of black color of powellite are discussed. This coloration of powellite can be prospecting guide for deposits of radioactive elements. читать далее...
Corundum-bearing Pegmatite of Crossing Trend of Eevolution of the Khibiny Massif and their Role in Reconstruction of Parental Rocks of Host Pre-Proterozoic Hornfels, p. 31 - 36
Corundum-bearing pegmatoids located within the Svintsovy (Lead) Creek, Mount Kukisvumchorr are studied. Mineralogy of these pegmatoid bodies and its changes in the direction from nepheline syenite to xenolith of hornfels are described in detail. Microinclusions in corundum, sodalite, and nepheline are investigated. Formation process of the pegmatoids and initial composition of annite-feldspar hornfels are proposed. читать далее...
Typomorphism of the Columbite-Tantalite Group Minerals in the Rare-Metal Tantalum-bearing Amazonite-Albite Granites, p. 37 - 44
Mineralogical investigation of three tantalum-bearing granite massifs Orlovskoe and Aetykinskoe (Transbaikalia) and Maykul`skoe (Kazakhstan) has been conducted. Typomorphic peculiar features of the columbite–tantalite (Col-Ta) group minerals in these massifs according to their connection with different age phase and facial granite varieties have been revealed. It has been shown that combined with the other typomorphic signs crystal morphology peculiar features of the Col-Ta group minerals could be advantageously used during the geological prospecting for the survey and estimation of tantalum ore occurrences within the massifs of amazonite–albite rare metal subalkalic type granites. Col-Ta typomorphic signs may be also used at the stage of the detailed and exploitation exploration during the mineralogical and technological mapping of tantalum deposits in such massifs. читать далее...
Mineralogical and Geochemical Features of Deposits in the Southeastern Transbaikalia for Local Forecast of Uranium Ore, p. 45 - 53
A.A. Chernikov discovered the uranium-molybdenum hydrochemical anomaly in the southern Argun region (southeastern Transbaikalia) that had been forcible argument for geological substantiation to renew research and exploration for uranium in this region. This anomaly is important to understand a state of supergene zone of uranium deposits with leached near-surface oxidired zone in the region. The Strel’tsovsk-Antei largest uranium deposits in Russia (Laverov et al., 1991, 1992) are characterized by great vertical extension (2.7 km) of ore mineralization and variation of ore mineralogy, mineralogy of metasomatic and host rocks downward (Ishchukova and Modnikov, 1991; Andreeva et al., 1996; Chernikov, 2006/2007). Chernyshov and Golobev (1996) reported and we confirmed in this study that massive pitchblende ore was deposited within interval 134–136 (~150) Ma. Isotopic age of “protore” is 250–260 (~300) Ma; age of Th-bearing uraninite is ~500 Ma and older. New data indicated that uranium (IV) oxides and silicates, including coffinite, uranium titanates, and brannerite, in ore of the Antei deposit are young, from zero to few Ma. Exclusively very young uranium (IV) silicates and titanates are observed at lower levels of the Anntei deposit. These mineral precipitated from meteoric water infiltrated from surface into deep levels of the deposit. The basic level of karst and fracture rocks can be probable outflow area of meteoric water at the Argun deposit. Distribution of oxygen and carbon isotopes in the Argun and Antei structural clusters confirms the main role of meteoric solution to form various minerals at the uranium deposits; this is important for revealing additional exploration and estimation criteria for these deposits. Large uranium accumulations are predicted to the northward of the Strel’tsovsk structure. читать далее...
Crystal Chemistry, Minerals as Prototypes of New Materials, Physical and Chemical Properties of Minerals
New Data on Polymorphs of Anhydrous Dicalcium Orthosilicate, p. 54 - 71
This article describes new data on polymorphous modifications (a, a’L, a’H, b, g) of Ca2SiO4. Structural features and mechanisms of phase transition between Ca2SiO4 polymorphs interrelated to modifications of K-Na sulfate aphthitalite (glaserite) K3Na[SO4]2 have been analyzed with regard to modular theory and theory of the closest packing. The major structural module [12]M(1)[6]M(1’)[10]M(2)2[TO4]2 (M = K, Na, Ca, Mg; T = S, Si) has been revealed for the Ca2SiO4 modifications and relative natural “glaserite-type” silicate minerals, bredigite Ca7Mg[SiO4]4 and merwinite Ca3Mg[SiO4]2; and calcio-olivine (g-Ca2SiO4) examined by the authors. The structural glaserite modules similar in symmetry and composition in the structures of described compounds account for topotactic character and reversible phase transition between the Ca2SiO4 polymorphs on the one hand and abundant assemblages of the mineral series on the other. читать далее...
New Data on Titanium-rich Biotite: a Problem of “Wodanite”, p. 72 - 77
Titanium-rich mica of the biotite series (“wodanite”) was found in tefrite of paleovolcano Rothenberg, Eifel, Germany, and studied by combining of electron microprobe analysis, IR spectroscopy and single-crystal structure analysis. The mineral is monoclinic, space group C2/m; unit-cell parameters are: a = 5.3165(1), b = 9.2000(2), c = 10.0602(2) Å, b = 100.354(2) . The presence of Ti results in strong distortion of the octahedron M(2). IR spectrum demonstrates the absence of detectable amounts of OH groups. The empirical formula of Ti-rich biotite is: (K0.74Na0.15Ca0.05)S0.94(Mg1.60Ti0.74Fe2+0.62Cr0.04)S3.00[(Si2.61Al1.29Fe3+0.10)S4.00O10](O1.17F0.71). Regularities of isomorphous substitutions, as well as genesis of Ti-rich micas of the biotite series are discussed. The idealized formula of the magnesium-titanium end member of this series is: K(Mg2Ti)(Si3AlO10)O2. читать далее...
Mineralogical Museums and Collections
Collection of Mining Engineer I.N. Kryzhanovsky, p. 79 - 85
Fabergé Eggs for Everyone. Point of Value, p. 86 - 89
To the History of Discovery of Some National Deposits by Collection’s Specimens, p. 90 - 96
«Amusing Mineralogy» in Stone: the Exhibition Devoted to Alexander E. Fersman’s 125th Anniversary, p. 97 - 108
The Review of Fersman Mineralogical Museum Acquisitions in 2006–2008, p. 109 - 123
Personalities
Alexander E. Fersman in the Ilmeny Mountains, p. 125 - 131
G.P. Barsanov – the Director of the Fersman Mineralogical Museum (1952–1976), p. 132 - 137
Georgiy Pavlovich Barsanov as I Remember Him, p. 138 - 142
Mineralogical Notes
Fe-dominant Bogdanovite from Cementation Zone of the Aginsky Gold-Telluride Deposit, Kamchatka Peninsula, Russia, p. 144 - 146
About Mackinawite Inclusions in Grossular Crystals at the Talnakh (Mt. Otdel’naya) Achtarandite Locality, p. 147
Discussions
The Essays on Fundamental and Genetic Mineralogy: 3. Minerals of Variable Composition with Variable Structure and Problems of Species Formation in Mineralogy. Eudialyte-Eucolites, p. 149 - 173
International Scientific Conference “Fersman Days” and its youth session “Fersmaniada” devoted to the 125th anniversary of academician Alexander E. Fersman, p. 174
Manuscript preparation guide for the journal “New Data on Minerals”, p. 175